Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
1.
BMC Microbiol ; 24(1): 138, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658823

RESUMO

BACKGROUND: Co-infection with other pathogens in coronavirus disease 2019 (COVID-19) patients exacerbates disease severity and impacts patient prognosis. Clarifying the exact pathogens co-infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is premise of the precise treatment for COVID-19 patients. METHODS: Sputum samples were collected from 17 patients in the COVID-19 positive group and 18 patients in the COVID-19 negative group. DNA extraction was performed to obtain the total DNA. Sequencing analysis using 16S and ITS rRNA gene was carried out to analyze the composition of bacterial and fungal communities. Meanwhile, all the samples were inoculated for culture. RESULTS: We did not observe significant differences in bacterial composition between the COVID-19 positive and negative groups. However, a significantly higher abundance of Candida albicans was observed in the upper respiratory tract samples from the COVID-19 positive group compared to the COVID-19 negative group. Moreover, the Candida albicans strains isolated from COVID-19 positive group exhibited impaired secretion of aspartyl proteinases. CONCLUSION: COVID-19 positive patients demonstrate a notable increase in the abundance of Candida albicans, along with a decrease in the levels of aspartyl proteinases, indicating the alteration of microbiota composition of upper respiratory tract.


Assuntos
Bactérias , COVID-19 , Candida albicans , Microbiota , Sistema Respiratório , SARS-CoV-2 , Escarro , Humanos , COVID-19/microbiologia , COVID-19/virologia , Microbiota/genética , Masculino , Candida albicans/isolamento & purificação , Candida albicans/genética , Feminino , Escarro/microbiologia , Escarro/virologia , Pessoa de Meia-Idade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia , Idoso , RNA Ribossômico 16S/genética , Adulto , Coinfecção/microbiologia , Coinfecção/virologia
2.
Microb Pathog ; 190: 106632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537762

RESUMO

With the widespread introduction of the Hib conjugate vaccine, Nontypeable Haemophilus influenzae (NTHi) has emerged as the predominant strain globally. NTHi presents a significant challenge as a causative agent of chronic clinical infections due to its high rates of drug resistance and biofilm formation. While current research on NTHi biofilms in children has primarily focused on upper respiratory diseases, investigations into lower respiratory sources remain limited. In this study, we collected 54 clinical strains of lower respiratory tract origin from children. Molecular information and drug resistance features were obtained through whole gene sequencing and the disk diffusion method, respectively. Additionally, an in vitro biofilm model was established. All clinical strains were identified as NTHi and demonstrated the ability to form biofilms in vitro. Based on scanning electron microscopy and crystal violet staining, the strains were categorized into weak and strong biofilm-forming groups. We explored the correlation between biofilm formation ability and drug resistance patterns, as well as clinical characteristics. Stronger biofilm formation was associated with a longer cough duration and a higher proportion of abnormal lung imaging findings. Frequent intake of ß-lactam antibiotics might be associated with strong biofilm formation. While a complementary relationship between biofilm-forming capacity and drug resistance may exist, further comprehensive studies are warranted. This study confirms the in vitro biofilm formation of clinical NTHi strains and establishes correlations with clinical characteristics, offering valuable insights for combating NTHi infections.


Assuntos
Antibacterianos , Biofilmes , Infecções por Haemophilus , Haemophilus influenzae , Biofilmes/crescimento & desenvolvimento , Humanos , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/fisiologia , Haemophilus influenzae/isolamento & purificação , Haemophilus influenzae/genética , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/classificação , Antibacterianos/farmacologia , Pré-Escolar , Feminino , Masculino , Criança , Lactente , Testes de Sensibilidade Microbiana , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Microscopia Eletrônica de Varredura , Farmacorresistência Bacteriana , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia
3.
Nature ; 626(7998): 392-400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086420

RESUMO

An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Células T de Memória , Infecções por Paramyxoviridae , Sistema Respiratório , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Imunidade Coletiva/imunologia , Memória Imunológica/imunologia , Interferon gama/imunologia , Células T de Memória/imunologia , Paramyxoviridae/imunologia , Paramyxoviridae/fisiologia , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/transmissão , Infecções por Paramyxoviridae/virologia , Sistema Respiratório/citologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Transcrição Gênica , Humanos
4.
Nature ; 619(7969): 338-347, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380775

RESUMO

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Assuntos
Aves , Interações entre Hospedeiro e Microrganismos , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Zoonoses Virais , Animais , Humanos , Aves/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Influenza Humana/virologia , Primatas , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Medição de Risco , Zoonoses Virais/prevenção & controle , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Replicação Viral
6.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36580912

RESUMO

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Assuntos
COVID-19 , Sistema Respiratório , SARS-CoV-2 , Humanos , Cílios/fisiologia , Cílios/virologia , COVID-19/virologia , Sistema Respiratório/citologia , Sistema Respiratório/virologia , SARS-CoV-2/fisiologia , Microvilosidades/fisiologia , Microvilosidades/virologia , Internalização do Vírus , Células Epiteliais/fisiologia , Células Epiteliais/virologia
7.
Nature ; 612(7941): 758-763, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517603

RESUMO

Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.


Assuntos
Autopsia , Encéfalo , COVID-19 , Especificidade de Órgãos , SARS-CoV-2 , Humanos , Encéfalo/virologia , COVID-19/virologia , RNA Viral/análise , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Replicação Viral , Fatores de Tempo , Sistema Respiratório/patologia , Sistema Respiratório/virologia
8.
J Virol ; 96(14): e0073822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35762755

RESUMO

Respiratory coronaviruses cause serious health threats to humans and animals. Porcine respiratory coronavirus (PRCoV), a natural transmissible gastroenteritis virus (TGEV) mutant with partial spike deletion, causes mild respiratory disease and is an interesting animal respiratory coronavirus model for human respiratory coronaviruses. However, the absence of robust ex vivo models of porcine airway epithelium hinders an understanding of the pathogenesis of PRCoV infection. Here, we generated long-term porcine airway organoids (AOs) derived from basal epithelial cells, which recapitulate the in vivo airway complicated epithelial cellularity. Both 3D and 2D AOs are permissive for PRCoV infection. Unlike TGEV, which established successful infection in both AOs and intestinal organoids, PRCoV was strongly amplified only in AOs, not intestinal organoids. Furthermore, PRCoV infection in AOs mounted vigorous early type I and III interferon (IFN) responses and upregulated the expression of overzealous inflammatory genes, including pattern recognition receptors (PRRs) and proinflammatory cytokines. Collectively, these data demonstrate that stem-derived porcine AOs can serve as a promising disease model for PRCoV infection and provide a valuable tool to study porcine respiratory infection. IMPORTANCE Porcine respiratory CoV (PRCoV), a natural mutant of TGEV, shows striking pathogenetic similarities to human respiratory CoV infection and provides an interesting animal model for human respiratory CoVs, including SARS-CoV-2. The lack of an in vitro model recapitulating the complicated cellularity and structure of the porcine respiratory tract is a major roadblock for the study of PRCoV infection. Here, we developed long-term 3D airway organoids (AOs) and further established 2D AO monolayer cultures. The resultant 3D and 2D AOs are permissive for PRCoV infection. Notably, PRCoV mediated pronounced IFN and inflammatory responses in AOs, which recapitulated the inflammatory responses associated with PRCoV in vivo infection. Therefore, porcine AOs can be utilized to characterize the pathogenesis of PRCoV and, more broadly, can serve as a universal platform for porcine respiratory infection.


Assuntos
Imunidade Inata , Organoides , Coronavirus Respiratório Porcino , Sistema Respiratório , Animais , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Modelos Animais de Doenças , Humanos , Organoides/imunologia , Organoides/virologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , SARS-CoV-2 , Suínos
10.
Proc Natl Acad Sci U S A ; 119(16): e2119680119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35353667

RESUMO

Muco-obstructive lung diseases are typically associated with high risks of COVID-19 severity; however, allergic asthma showed reduced susceptibility. To investigate viral spread, primary human airway epithelial (HAE) cell cultures were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and host­virus interactions were examined via electron microscopy, immunohistochemistry, RNA in situ hybridization, and gene expression analyses. In HAE cell cultures, angiotensin-converting enzyme 2 (ACE2) expression governed cell tropism and viral load and was up-regulated by infection. Electron microscopy identified intense viral egress from infected ciliated cells and severe cytopathogenesis, culminating in the shedding of ciliated cells packed with virions, providing a large viral reservoir for spread and transmission. Intracellular stores of MUC5AC, a major airway mucin involved in asthma, were rapidly depleted, likely to trap viruses. To mimic asthmatic airways, HAE cells were treated with interleukin-13 (IL-13), which reduced viral titers, viral messenger RNA, and cell shedding, and significantly diminished the number of infected cells. Although mucus hyperproduction played a shielding role, IL-13­treated cells maintained a degree of protection despite the removal of mucus. Using Gene Expression Omnibus databases, bulk RNA-sequencing analyses revealed that IL-13 up-regulated genes controlling glycoprotein synthesis, ion transport, and antiviral processes (albeit not the typical interferon-induced genes) and down-regulated genes involved in cilial function and ribosomal processing. More precisely, we showed that IL-13 reduced ACE2 expression, intracellular viral load, and cell-to-cell transmission while increasing the cilial keratan sulfate coating. In conclusion, intense viral and cell shedding caused by SARS-CoV-2 infection was attenuated by IL-13, which affected viral entry, replication, and spread.


Assuntos
COVID-19 , Interleucina-13 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interleucina-13/metabolismo , Sistema Respiratório/virologia
12.
Emerg Microbes Infect ; 11(1): 368-383, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34989330

RESUMO

Older individuals are at higher risk of SARS-CoV-2 infection and severe outcomes, but the underlying mechanisms are incompletely understood. In addition, how age modulates SARS-CoV-2 re-infection and vaccine breakthrough infections remain largely unexplored. Here, we investigated age-associated SARS-CoV-2 pathogenesis, immune responses, and the occurrence of re-infection and vaccine breakthrough infection utilizing a wild-type C57BL/6N mouse model. We demonstrated that interferon and adaptive antibody response upon SARS-CoV-2 challenge are significantly impaired in aged mice compared to young mice, which results in more effective virus replications and severe disease manifestations in the respiratory tract. Aged mice also showed increased susceptibility to re-infection due to insufficient immune protection acquired during the primary infection. Importantly, two-dose COVID-19 mRNA vaccination conferred limited adaptive immune response among the aged mice, making them susceptible to SARS-CoV-2 infection. Collectively, our findings call for tailored and optimized treatments and prevention strategies against SARS-CoV-2 among older individuals.


Assuntos
Fatores Etários , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Envelhecimento/imunologia , Animais , Anticorpos Antivirais/imunologia , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Humanos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Vacinação , Replicação Viral
15.
Cell Rep ; 38(6): 110344, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35093235

RESUMO

SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs, and farmed mink. Since the start of the 2019 pandemic, several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all three mink adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.


Assuntos
Adaptação Biológica/imunologia , SARS-CoV-2/genética , Zoonoses Virais/genética , Animais , COVID-19 , Furões/imunologia , Aptidão Genética/genética , Humanos , Vison/imunologia , Mutação , Pandemias , Sistema Respiratório/virologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia
16.
Sci Rep ; 12(1): 202, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997042

RESUMO

Pneumonia remains a major cause of mortality and morbidity. Most molecular diagnoses of viruses rely on polymerase chain reaction (PCR) assays that however can fail due to primer mismatch. We investigated the performance of routine virus diagnostics in Kilifi, Kenya, using random-primed viral next generation sequencing (viral NGS) on respiratory samples which tested negative for the common viral respiratory pathogens by a local standard diagnostic panel. Among 95 hospitalised pneumonia patients and 95 household-cohort individuals, analysis of viral NGS identified at least one respiratory-associated virus in 35 (37%) and 23 (24%) samples, respectively. The majority (66%; 42/64) belonged to the Picornaviridae family. The NGS data analysis identified a number of viruses that were missed by the diagnostic panel (rhinovirus, human metapneumovirus, respiratory syncytial virus and parainfluenza virus), and these failures could be attributed to PCR primer/probe binding site mismatches. Unexpected viruses identified included parvovirus B19, enterovirus D68, coxsackievirus A16 and A24 and rubella virus. The regular application of such viral NGS could help evaluate assay performance, identify molecular causes of missed diagnoses and reveal gaps in the respiratory virus set used for local screening assays. The results can provide actionable information to improve the local pneumonia diagnostics and reveal locally important viral pathogens.


Assuntos
Genoma Viral , Metagenoma , Metagenômica , Pneumonia Viral/diagnóstico , Sistema Respiratório/virologia , Vírus/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Quênia , Diagnóstico Ausente , Filogenia , Pneumonia Viral/virologia , Valor Preditivo dos Testes , Vírus/isolamento & purificação
17.
Respiration ; 101(6): 610-618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35038715

RESUMO

BACKGROUND: The novel beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), enters the human body via mucosal surfaces of the upper and/or lower respiratory tract. Viral entry into epithelial cells is mediated via angiotensin-converting enzyme 2 (ACE2) and auxiliary molecules, but the precise anatomic site of infection still remains unclear. METHODS: Here, we systematically investigated the main SARS-CoV-2 receptor proteins ACE2 and transmembrane serine protease 2 (TMPRSS2), as well as 2 molecules potentially involved in viral entry, furin and CD147, in formalin-fixed, paraffin-embedded human tissues. Tissue microarrays incorporating a total of 879 tissue cores from conjunctival (n = 84), sinonasal (n = 95), and lung (bronchiolar/alveolar; n = 96) specimens were investigated for protein expression by immunohistochemistry. RESULTS: ACE2 and TMPRSS2 were expressed in ciliated epithelial cells of the conjunctivae and sinonasal tissues, with highest expression levels observed in the apical cilia. In contrast, in the lung, the expression of those molecules in bronchiolar and alveolar epithelial cells was much rarer and only very focal when present. Furin and CD147 were more uniformly expressed in all tissues analyzed, including the lung. Interestingly, alveolar macrophages consistently expressed high levels of all 4 molecules investigated. CONCLUSIONS: Our study confirms and extends previous findings and contributes to a better understanding of potential SARS-CoV-2 infection sites along the human respiratory tract.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Basigina/metabolismo , Furina/metabolismo , Sistema Respiratório/metabolismo , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Internalização do Vírus , COVID-19/metabolismo , COVID-19/virologia , Humanos , Pulmão/metabolismo , Sistema Respiratório/virologia
18.
mSphere ; 7(1): e0098421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044807

RESUMO

Streptococcus pneumoniae (the pneumococcus) is a leading cause of pneumonia in children under 5 years of age. Coinfection by pneumococci and respiratory viruses enhances disease severity. Little is known about pneumococcal coinfections with respiratory syncytial virus (RSV). Here, we developed a novel infant mouse model of coinfection using pneumonia virus of mice (PVM), a murine analogue of RSV, to examine the dynamics of coinfection in the upper respiratory tract, an anatomical niche that is essential for host-to-host transmission and progression to disease. Coinfection increased damage to the nasal tissue and increased production of the chemokine CCL3. Nasopharyngeal pneumococcal density and shedding in nasal secretions were increased by coinfection. In contrast, coinfection reduced PVM loads in the nasopharynx, an effect that was independent of pneumococcal strain and the order of infection. We showed that this "antagonistic" effect was absent using either ethanol-killed pneumococci or a pneumococcal mutant deficient in capsule production and incapable of nasopharyngeal carriage. Colonization with a pneumococcal strain naturally unable to produce capsule also reduced viral loads. The pneumococcus-mediated reduction in PVM loads was caused by accelerated viral clearance from the nasopharynx. Although these synergistic and antagonistic effects occurred with both wild-type pneumococcal strains used in this study, the magnitude of the effects was strain dependent. Lastly, we showed that pneumococci can also antagonize influenza virus. Taken together, our study has uncovered multiple novel facets of bacterial-viral coinfection. Our findings have important public health implications, including for bacterial and viral vaccination strategies in young children. IMPORTANCE Respiratory bacterial-viral coinfections (such as pneumococci and influenza virus) are often synergistic, resulting in enhanced disease severity. Although colonization of the nasopharynx is the precursor to disease and transmission, little is known about bacterial-viral interactions that occur within this niche. In this study, we developed a novel mouse model to examine pneumococcal-viral interactions in the nasopharynx with pneumonia virus of mice (PVM) and influenza. We found that PVM infection benefits pneumococci by increasing their numbers in the nasopharynx and shedding of these bacteria in respiratory secretions. In contrast, we discovered that pneumococci decrease PVM numbers by accelerating viral clearance. We also report a similar effect of pneumococci on influenza. By showing that coinfections lead to both synergistic and antagonistic outcomes, our findings challenge the existing dogma in the field. Our work has important applications and implications for bacterial and viral vaccines that target these microbes.


Assuntos
Antibiose , Coinfecção/microbiologia , Coinfecção/virologia , Infecções Pneumocócicas/virologia , Infecções por Pneumovirus/virologia , Sistema Respiratório/virologia , Fatores Etários , Animais , Coinfecção/imunologia , Citocinas/análise , Citocinas/imunologia , Modelos Animais de Doenças , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Pneumonia Murina/genética , Vírus da Pneumonia Murina/imunologia , Nasofaringe/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções por Pneumovirus/imunologia , Sistema Respiratório/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Carga Viral
19.
Emerg Microbes Infect ; 11(1): 412-423, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34931581

RESUMO

Although frequently reported since the beginning of the pandemic, questions remain regarding the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) interaction with circulating respiratory viruses in coinfected patients. We here investigated dual infections involving early-pandemic SARS-CoV-2 and the Alpha variant and three of the most prevalent respiratory viruses, rhinovirus (RV) and Influenza A and B viruses (IAV and IBV), in reconstituted respiratory airway epithelial cells cultured at air-liquid interface. We found that SARS-CoV-2 replication was impaired by primary, but not secondary, rhino- and influenza virus infection. In contrast, SARS-CoV-2 had no effect on the replication of these seasonal respiratory viruses. Inhibition of SARS-CoV-2 correlated better with immune response triggered by RV, IAV and IBV than the virus entry. Using neutralizing antibody against type I and III interferons, SARS-CoV-2 blockade in dual infections could be partly prevented. Altogether, these data suggested that SARS-CoV-2 interaction with seasonal respiratory viruses would be modulated by interferon induction and could impact SARS-CoV-2 epidemiology when circulation of other respiratory viruses is restored.


Assuntos
Coinfecção/virologia , Vírus da Influenza A/fisiologia , Vírus da Influenza B/fisiologia , Sistema Respiratório/virologia , Rhinovirus/fisiologia , SARS-CoV-2/fisiologia , Replicação Viral/fisiologia , Coinfecção/imunologia , Humanos , Imunidade Inata , Interferons/fisiologia
20.
Nature ; 601(7893): 410-414, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794169

RESUMO

The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in humans1. CV2CoV is a second-generation mRNA vaccine containing non-modified nucleosides but with optimized non-coding regions and enhanced antigen expression. Here we report the results of a head-to-head comparison of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in non-human primates. We immunized 18 cynomolgus macaques with two doses of 12 µg lipid nanoparticle-formulated CVnCoV or CV2CoV or with sham (n = 6 per group). Compared with CVnCoV, CV2CoV induced substantially higher titres of binding and neutralizing antibodies, memory B cell responses and T cell responses as well as more potent neutralizing antibody responses against SARS-CoV-2 variants, including the Delta variant. Moreover, CV2CoV was found to be comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques. Although CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tracts. Binding and neutralizing antibody titres were correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in non-human primates.


Assuntos
Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Nucleosídeos/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/normas , Feminino , Macaca fascicularis/imunologia , Masculino , Células B de Memória/imunologia , Nucleosídeos/genética , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinas Sintéticas/normas , Carga Viral , Vacinas de mRNA/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...